
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 12, DECEMBER 2012 1789

Mismatch-Aware Common-Centroid Placement for
Arbitrary-Ratio Capacitor Arrays Considering

Dummy Capacitors
Cheng-Wu Lin, Jai-Ming Lin, Yen-Chih Chiu, Chun-Po Huang, and Soon-Jyh Chang, Member, IEEE

Abstract—Switched capacitors are commonly used in analog
circuits to increase the accuracy of analog signal processing and
lower power consumption. To take full advantage of switched
capacitors, it is very important to achieve accurate capacitance
ratios in the layout of the capacitor arrays, which are affected by
systematic and random mismatches. A good capacitor placement
should have a common-centroid structure with the highest
possible degree of dispersion to mitigate mismatches. Several
dummy units should be inserted to make the placement shape
more square and compact. This paper proposes a simulated-
annealing-based approach for mismatch-aware common-centroid
placement under the above constraints. A pair-sequence rep-
resentation is used to record a placement, and a couple of
associated operations are developed to find better solutions.
The experimental results show that the proposed placements
achieve smaller oxide-gradient-induced mismatch and larger
overall correlation coefficients (i.e., higher degree of dispersion)
than those of previous works.

Index Terms—Analog placement, capacitor array, common-
centroid constraint, mismatch minimization, pair sequence.

I. Introduction

SWITCHED-CAPACITOR (SC) circuits are a cost-
effective approach to implementing various analog in-

tegrated circuits. The SC approach allows designers to re-
place large-area resistors with smaller SCs, which not only
improves the precision of analog circuit functions [2] but
also lowers power consumption. However, in order to fully
take advantage of SC circuits, the capacitor size must be
precisely controlled. Fig. 1 shows a biquad filter implemented
using the SC technique [3]. This circuit is composed of
two operational amplifiers and two capacitor arrays, namely,
{C1, C2, C3, C4} and {C5, C6}. The accuracy of this circuit
mainly depends on the ratio of capacitances. Fig. 2 shows
a successive-approximation-register analog-to-digital converter
(SAR ADC), which has low power consumption and is thus
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widely used in biomedical chips and portable instruments. The
most important component in a SAR ADC is the capacitor
array, which comprises a set of capacitors C1, . . . , Cn+1. If
these capacitors physically approach a predefined capacitance
ratio (i.e., C1 = C2, Ci+1 = 2Ci, i = 2, . . . , n), the capacitor
array is regarded as matched. It is very important to obtain
a matched capacitor array because the linearity of the SAR
ADC is mainly determined by the matching behavior.

A nominally matched capacitor array may be mismatched
after integrated-circuit manufacturing. Circuit mismatches can
generally be divided into two types, namely, systematic mis-
matches and random mismatches [4], [5].

For systematic mismatch, process biases have equal effects
on identical devices. Ideally, if two devices have identical
layouts, they will be matched because they suffer equal
mismatches from the process biases. Therefore, given a set
of devices with different sizes, designers prefer to divide
them into several identical-layout-size subdevices to achieve
better matching. However, the presence of process gradients
also causes systematic mismatch [6]. The subdevices of a
given device should exhibit symmetry in an array to average
the effects induced by process gradients. In order to reduce
systematic mismatch, designers usually adopt a common-
centroid layout structure [7] to achieve these goals.

Random mismatch is caused by statistical fluctuations in
processing conditions or material properties. The random
variations in physical quantities of two identical devices can
be modeled as two terms for mismatch, one that is inversely
proportional to the device area and one that depends on
the distance between the two devices [8]. Thus, the random
mismatch can be reduced by increasing the device area. Closer
devices have higher correlation in their parameters, and thus
have less mismatch [9]. For a set of devices, their correlation
can be determined by the dispersion degree of their subdevices.
Device correlation increases with increasing dispersion degree
of subdevices [9]. Therefore, the placement of subdevices in
an array should exhibit the highest degree of correlation and
dispersion [10] for reducing mismatch.

Fig. 3 shows the effects of various placement styles on
the two types of mismatch. The capacitor array consists of
four capacitors, whose capacitances have an integer ratio
of 1:2:16:45. Each capacitor is further divided into several
identical-layout-size unit capacitors, which are denoted
by ui, i = 1, . . . , 4. Fig. 3(a) shows a placement with a
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Fig. 1. Architecture of an SC biquad filter.

Fig. 2. Architecture of an n-bit SAR ADC.

Fig. 3. Two different placements for a four-capacitor array. Each capacitor is
divided into several identical-layout-size unit capacitors ui, i=1. . . 4. The unit
capacitors denoted by u3 are colored in gray. (a) Common-centroid placement,
which is good for reducing systematic mismatch. (b) Placement (from [10])
exhibiting a higher degree of dispersion, which is better for reducing random
mismatch.

common-centroid structure. The unit capacitors are placed
symmetrically with respect to the center of the layout, and
thus the centroid of each capacitor is exactly on or close
to the center of the layout. Compared with the symmetric
placement shown in Fig. 3(a), Fig. 3(b) shows a placement
with a higher random distribution (constructed based on the
methodology in [10]). Since the placement in Fig. 3(a) has
better symmetry, it better reduces systematic mismatch [3],
[11]. The placement in Fig. 3(b) exhibits a higher degree of
dispersion, which better reduces random mismatch [10]. To
reduce systematic and random mismatches simultaneously, a
good arrangement should have a common-centroid structure
with the highest possible degree of dispersion.

Many circuits, such as filters, modulators, and oscillators
[12], employ noninteger capacitance ratios (e.g., the capaci-
tance ratio of capacitor array 1 in Fig. 1 is 1:1.1:15.6:44.8,
which is sourced from [3]). A noninteger-ratio capacitor array
is usually divided into an integer portion and a noninteger por-
tion, in which the layout of the integer portion is constructed
using an integer number of unit capacitors and that of the
noninteger portion is implemented using nonunit capacitors.
The ratio of a nonunit capacitor relative to a unit capacitor
is between 1 and 2. Based on the slotted rectangle technique

Fig. 4. Two layout techniques [13] for a nonunit capacitor. (a) Two origi-
nally adjacent unit capacitors. (b) Nonunit capacitor in the slotted rectangle
technique. (c) Nonunit capacitor in the stub technique.

or the stub technique [13], [14], two adjacent unit capacitors
are required to implement a nonunit capacitor. One of the
two adjacent unit capacitors is stretched to the other side
and the other one is shrunk to form a dummy capacitor.
Fig. 4 illustrates the two layout techniques. Fig. 4(a) shows
the original placement of two adjacent unit capacitors. The
difference between the two layout techniques is that the slotted
rectangle technique uses a slot [see Fig. 4(b)] to keep the same
overall perimeter-to-area ratio as that of the unit capacitor
whereas the stub technique uses a stub [see Fig. 4(c)].

Two adjacent unit capacitors are required to implement a
feasible layout for a nonunit capacitor, which is referred to
as the adjacency constraint in this paper. In a 2-D capacitor
placement, the area of two adjacent unit capacitors can be
vertical or horizontal. The direction of the two adjacent unit
capacitors depends on the routing channel direction. According
to the routing rules in [13], routing wires are either horizontal
or vertical to prevent intersection or overlap capacitance,
and the routing of upper capacitor plates is separated from
that of lower capacitor plates to avoid additional coupling
and overlap capacitance. Fig. 5 shows a layout structure
with vertical routing channels, where the upper-plate and
lower-plate routing channels are interchanged. Therefore, the
two adjacent unit capacitors for a nonunit capacitor should
be placed either vertically or horizontally according to the
routing channel direction, as shown in Fig. 6. Without loss
of generality, the adjacency constraint refers to vertically
adjacent unit capacitors. Unit capacitors at the edges of the
array suffer less fringing than those internal to the array due to
adjacent structures, and these unequal effects cause mismatch
[13]. Thus, the array should be surrounded by dummy unit
capacitors to act as adjacent structures. As shown in Fig. 5, the
unit capacitors connected by the ground (GND) are dummy
ones inserted for this purpose. In the following sections,
the placements do not show these dummy unit capacitors.
However, they should be inserted after capacitor placement
to reduce the edge effects. Regular routing channels as those
shown in Fig. 5 facilitate the interconnection of unit capacitors,
but it does not mean that the matching of interconnection
can be achieved more easily in this structure. Since this
paper focuses only on the placement of unit capacitors, the
interconnection issue is left as a further research problem.

For simplicity, a matrix is used to represent the placement
of a capacitor array, where each entry represents one unit
capacitor. The number of entries in the matrix should be equal
to or larger than the number of unit capacitors in the capacitor
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Fig. 5. Layout structure with vertical routing channels.

Fig. 6. Nonunit capacitors that occupy the area of two unit capacitors that
are (a) vertically adjacent and (b) horizontally adjacent.

Fig. 7. (a) 3×7 matrix and an experimental placement result. (b) 5×5 matrix
and an experimental placement result. (c) 5 × 5 matrix and the placement
result after exchanging the locations of dummy unit capacitors and other unit
capacitors (dummy unit capacitors are colored in gray).

array. For matrices whose entries outnumber unit capacitors,
dummy unit capacitors should be inserted into empty entries.
Although dummy unit capacitors do not induce mismatches,
their location affects mismatch. For example, given a capacitor
array that comprises four capacitors with a capacitance ratio
of 1:4:8:8, Fig. 7(a) shows a placement for a 3 × 7 matrix.
Since [7] suggests that an array should be nearly square for
layout compactness, a square matrix can be used to obtain a
more compact common-centroid placement. Fig. 7(b) shows a
placement for the capacitor array in a 5×5 matrix, where four
dummy unit capacitors are inserted. Fig. 7(c) shows another
placement with the locations of the dummy unit capacitors
changed. Since the placements in Fig. 7(b) and (c) are differ-
ent, they induce different mismatches. To obtain a good place-
ment, dummy unit capacitor placement must be considered.

A. Previous Work

To achieve better matching, the placement of a capacitor
array is usually implemented with a common-centroid
structure. Numerous works [11], [15]–[19] have studied
common-centroid placement. Sayed and Dessouky [11]

introduced an oxide gradient model to estimate oxide-
gradient-induced mismatch. Based on this model, they
presented a deterministic procedure for constructing a
common-centroid placement. Some other works used
topological representations, such as B*-trees [15], sequence-
pairs [16], and center-based corner block list (C-CBL) [17],
to tackle analog placement with common-centroid constraint.
Strasser et al. [15] applied B*-trees to hierarchically bounded
enumeration of basic building blocks and used enhanced
shape functions for representing and combining the possible
placements of the basic building blocks. Their placement
algorithm is deterministic, and it can generate the Pareto front
of placements with respect to different aspect ratios. Xiao and
Young [16] explored the feasible conditions for the common-
centroid and 1-D symmetry constraints based on the sequence-
pair representation, and they showed a simulated-annealing-
based placement tool that can handle the two constraints
simultaneously. Ma et al. [17] proposed the C-CBL repre-
sentation for denoting the placement of a common-centroid
group. They presented a simulated-annealing-based placement
method that can deal with symmetry, common-centroid, and
general placement constraints at the same time. The works in
[15]–[17] are general approaches that can handle common-
centroid placement for subdevices with arbitrary shapes and
dimensions.

For handling arrays of subdevices with regular shape and
size, Ma et al. [18] proposed a grid-based approach that
can distribute the subdevices uniformly to average out the
influence of parasitic effects. In their approach, the assignment
of subdevices was not constrained into a prespecified array.
Given a group of subdevices, they generated a collection of
feasible placement solutions with different column numbers
and then used a pruning procedure to eliminate the redundant
solutions dominated by others. The positions of subdevices
in an array can be further exchanged through the simulated
annealing (SA) process. Lin et al. [19] presented a thermal-
driven common-centroid placement algorithm to assign the
subdevices evenly into rows under the consideration of thermal
profile. For a matching group, their approach generated all
possible common-centroid placements with different aspect
ratios (i.e., different numbers of rows), which is the same as
the manner in [18].

For yield enhancement, Luo et al. [9], [20] introduced a spa-
tial correlation model and discussed the relationship between
correlation and variation of capacitance ratio. They showed
that a capacitor placement with higher correlation coefficients
achieves better matching. Furthermore, they proposed a heuris-
tic algorithm [10], which partially exhaustively searches pos-
sible combinations and computes the correlation coefficients
for each combination, to obtain a placement with the highest
or near-highest correlation coefficients for yield improvement.
Although their placement results exhibit a high degree of
dispersion, their placements are not in a common-centroid
structure. None of the above works, except for [11], considered
noninteger-ratio capacitors in their method. Therefore, none
of the existing works presented a method for constructing a
common-centroid placement with the highest possible degree
of dispersion for arbitrary-ratio capacitor arrays.
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B. Our Contributions

It was suggested in [7] that a common-centroid layout
should have the property of dispersion. Therefore, in this
paper, an algorithm is proposed for constructing a placement
that has a common-centroid structure and exhibits the highest
possible degree of dispersion to reduce systematic and random
mismatches simultaneously. The algorithm considers the adja-
cency constraint and the resulting placement is always feasible
for the layout of noninteger-ratio capacitors.

Based on SA [21], a pair-sequence representation is used for
the common-centroid placement. Since each pair of subdevices
in a pair sequence can be automatically placed to symmetric
locations in a layout, the corresponding placement can eas-
ily satisfy the common-centroid constraint. Three operations
are proposed for perturbing a pair sequence, which can in-
crease the degree of dispersion without breaking the common-
centroid constraint in the resulting placement. Finally, a pro-
cedure for maintaining a feasible placement that fulfills the
adjacency constraint after each perturbation is proposed. To
make the proposed approach more efficient, the operations use
a bucket data structure, redundant operations are removed, and
multiple operations are combined to enhance the convergence
of the SA process. The experimental results show that the
placements obtained using the proposed method can achieve
a smaller oxide-gradient-induced mismatch and larger overall
correlation coefficients (i.e., higher degree of dispersion) than
those of previous works.

The remainder of this paper is organized as follows.
Section II formulates the common-centroid placement problem
for arbitrary-ratio capacitor arrays. Section III describes the
transformation between a pair sequence and its corresponding
placement. Section IV shows how to initialize a pair se-
quence for an arbitrary-ratio capacitor set. Section V presents
the operations for perturbing a pair sequence, the procedure
for maintaining a feasible placement that fulfills the adja-
cency constraint, and the techniques for increasing efficiency.
Section VI reports the experimental results. Finally, conclu-
sions are drawn in Section VII.

II. Problem Formulation

In this paper, a common-centroid capacitor placement that
fulfills several requirements for an arbitrary-ratio capacitor ar-
ray is considered. First, the placement should have a common-
centroid structure with the highest possible degree of disper-
sion to reduce systematic and random mismatches simulta-
neously. The resulting placement must satisfy the adjacency
constraint if noninteger-ratio capacitors exist. Matrices whose
entries outnumber the unit capacitors in a capacitor array must
use dummy unit capacitors.

Let C = {C1, C2, . . . , Ct} denote a set of t capacitors, and
the ratio of C1 : C2 : . . . : Ct be q1 : q2 : . . . : qt . Without loss
of generality, assume that qi is a rational number and that qi ≤
qj if i < j, where 1 ≤ i, j ≤ t. Each capacitor Ci occupies bi

unit capacitors in the corresponding layout, where bi = �qi�.
Let w denote the total number of unit capacitors in C (i.e.,
w = b1 + b2 + . . . + bt). Let Ar×s denote the r × s matrix used
to place the unit capacitors of C; each entry in Ar×s can place

one unit capacitor. Let n denote the size of the matrix, where
n = r × s (i.e., Ar×s at most can place n unit capacitors).

Given an arbitrary-ratio capacitor array C and an arbitrary
matrix Ar×s, the capacitor placement problem is to assign each
unit capacitor of C to a unique entry of Ar×s. If n equals
w, each entry in Ar×s contains exactly one unit capacitor.
However, if n > w, entries which are not occupied by
unit capacitors have to contain dummy unit capacitors. These
dummy unit capacitors form an additional type of capacitor,
named dummy capacitor CD. Let bD denote the number of
dummy unit capacitors, where bD = n − w.

Sayed and Dessouky proposed the oxide gradient model
[11] for estimating the oxide-gradient-induced ratio mismatch
of a capacitor array. Their model is used here to compute
the process-gradient-induced mismatch. The spatial correlation
model [9], [20] is applied to measure the degree of dispersion
for a placement. Thus, the objective of the capacitor placement
problem is to construct a placement that minimizes the oxide-
gradient-induced mismatch and maximizes the overall corre-
lation coefficients simultaneously. Note that the mismatches
caused by dummy unit capacitors need not be evaluated. To
achieve a feasible layout, the adjacency constraint must be
fulfilled in the resulting placement if there exist noninteger-
ratio capacitors.

In the following sections, the formulas for the oxide-
gradient-induced mismatch [11] and the overall correlation
coefficients [9], [20] are briefly reviewed. The two evaluation
models are adopted in this paper for fair comparison with
previous capacitor placement algorithms. The two models may
not be accurate enough for modern technology or for different
shapes of unit capacitors. To reflect the actual effects in the
required technology, more accurate models can be substituted
for the present ones in the proposed methodology.

A. Review of the Oxide Gradient Model

For a group of capacitors with arbitrary ratio, the ratio
mismatch is calculated for each pair of capacitors and the
largest value is retained. For t capacitors with a capacitance
ratio of C1 : C2 : . . . : Ct , which after the parallel unit-
capacitor layout becomes C∗

1 : C∗
2 : . . . : C∗

t , the capacitance
ratio mismatch M is defined as

M = max

⎛
⎝

∣∣∣∣∣∣
C∗

i

C∗
j

− Ci

Cj

Ci

Cj

∣∣∣∣∣∣
⎞
⎠ × 100%

= max

(∣∣∣∣∣C
∗
i

C∗
j

Cj

Ci

− 1

∣∣∣∣∣
)

× 100% (1)

for all i and j, where 1 ≤ i, j ≤ t.
Let {ui1, ui2, . . . , uik} denote the set of k unit capacitors

belonging to Ci. The capacitance of Ci after the parallel unit-
capacitor layout is the summation of the capacitance of the
unit capacitors

C∗
i =

∑
k

uik. (2)

Assume that the unit-capacitor array is affected by a linear
oxide gradient γ in the direction specified by an angle θ, as
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Fig. 8. Geometry of a unit-capacitor array for the estimation of oxide-
gradient-induced mismatch.

shown in Fig. 8. Since the gradient angle cannot be predicted,
the mismatch is estimated through 0° ≤ θ ≤ 180° and the max-
imum mismatch is retained. In Fig. 8, W and H are the width
and height of a unit capacitor, and Sx and Sy are the horizontal
and vertical spacing between unit capacitors. Let t0 denote the
oxide thickness at the origin O and the capacitance of a unit
capacitor located at the origin be C0. Due to the oxide gradient,
a unit capacitor located at a different location experiences
different oxide thickness and thus has different capacitance

uik = C0
t0

tk
fk (3)

where tk is the equivalent oxide thickness at location (xk, yk)

tk = t0 + γ(xk cos θ + yk sin θ). (4)

In (3), if the unit capacitor is treated as the decimal part of a
nonunit capacitor, then fk is the decimal value; otherwise, fk

= 1. Assume that the unit-capacitor array is achieved by an
r × s matrix. If the unit capacitor uik is located at the entry in
the rkth row and skth column, the coordinates (xk, yk) of uik

can be computed as

xk =

(
sk − s + 1

2

)
× (W + Sx) (5)

yk =

(
r + 1

2
− rk

)
× (H + Sy). (6)

B. Review of the Spatial Correlation Model

Assume that the unit-capacitor array is achieved by an r ×
s matrix. For any two unit capacitors ui and uj , which are
located at the entries in the rith row and sith column and the
rjth row and sjth column, their correlation coefficient ρij is
defined as

ρij = ρD(i,j)
u (7)

D(i, j) =
√

(ri − rj)2 + (si − sj)2 × l (8)

where 0 < ρu < 1, and l depends on process and size of
devices. To simplify the experiment, assume that l = 1 to
observe the relation between correlation and mismatch [10].

Let L denote the overall correlation coefficients of a ca-
pacitor array. For t capacitors, L is the summation of the
correlation coefficients of all the capacitor pairs

L =
t−1∑
i=1

t∑
j=i+1

Rij (9)

where Rij is the correlation coefficient of two capacitors Ci

and Cj . Assume that Ci consists of μ unit capacitors and Cj

comprises ν unit capacitors. Rij can be calculated as

Rij =

μ∑
a=1

ν∑
b=1

ρab√(
μ + 2

μ−1∑
a=1

μ∑
b=a+1

ρab

) (
ν + 2

ν−1∑
a=1

ν∑
b=a+1

ρab

) . (10)

III. Pair-Sequence Representation

In this section, the pair-sequence representation for the
placement of all elements in a matrix is introduced. Then, the
method used for mapping each element in the representation
to a unique entry of the matrix is described.

A. Matrix to Pair-Sequence Transformation

In this section, the pair-sequence Pr×s representation is
proposed for denoting the placement of n elements in matrix
Ar×s. The pair sequence Pr×s = [p1, p2, . . . , pm] is an array
of m elements, with each element pi in Pr×s denoting a
pair of symmetric entries in Ar×s except the first element
p1, where m = �n/2� and n = r × s. For even and odd n,
the first element p1 denotes a pair of entries in the matrix
and only one entry in the matrix, respectively. The subscript
r × s of the representation indicates the dimensions of the
matrix mapped by the representation. Since the placement
of elements can have different dimensions, it is necessary to
distinguish pair sequences with the same number of elements
mapped to matrices with different dimensions. For example,
although the sizes of matrices A2×6, A6×2, A3×4, and A4×3 are
identical, their dimensions are different. Subscript r×s is thus
appended to each pair sequence to denote the dimensions of
the corresponding matrix.

The entries of a matrix Ar×s are encoded into the pair-
sequence representation as follows. Let aij denote the entry in
the ith row and jth column, where 1 ≤ i ≤ r and 1 ≤ j ≤ s.
The coordinate of aij is denoted by (xj , yi), where xj = j and
yi = i. The matrix Ar×s has a unique center whose coordinates
are denoted by (xc, yc), where xc = (s+1)/2 and yc = (r+1)/2.
Let d denote the distance from aij to the center of Ar×s, which
can be computed as

d =
√

(xj − xc)2 + (yi − yc)2. (11)

Entries with the same distance d form a circle, which is
denoted by Rd . Two entries are considered as a pair if they are
in the same circle and opposite each other with respect to the
center of Ar×s, i.e., the two entries are symmetric to each other.
After all entries of the matrix are classified into circles, the
pairs of entries in a circle are selected serially in counterclock-
wise order from the 12-o’clock position. Then, a pair sequence
is composed of these pairs from the inner circle to the outer
circle. If the matrix comprises an odd number of entries, the
innermost circle contains only one entry. In this case, the first
pair in the corresponding pair sequence has only one element.

Fig. 9(a) shows a matrix A3×3. The entries can be divided
into three circles, namely, R0, R1, and R√

2, according to
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Fig. 9. (a) Circles of matrix A3×3, (a21, a23) is an example of a pair.
(b) Circles of matrix A4×4, (a21, a34) is an example of a pair.

their distances to the center of A3×3. The entries in each
circle are paired as follows. Since circle R0 contains only one
entry, a22 cannot be paired. For the entries in circle R1, entry
a12 is first selected because it is located at the 12-o’clock
position. Since a12 and a32 are symmetric with respect to the
center of the matrix, (a12, a32) is considered a pair. Following
counterclockwise order, entry a21 and its opposite entry a23 are
selected and considered as another pair. Similarly, the entries
in circle R√

2 are paired; pairs (a11, a33) and (a31, a13) are
obtained in sequence. After the entries in all circles are paired,
a pair sequence is constructed by collecting the ordered pairs
from the inner circle to the outer circle. Thus, the pair sequence
P3×3 = [a22, (a12, a32), (a21, a23), (a11, a33), (a31, a13)] is
derived. Fig. 9(b) shows another matrix A4×4. Similarly, the
pair sequence P4×4 = [(a22, a33), (a32, a23), (a12, a43), (a21,
a34), (a31, a24), (a42, a13), (a11, a44), (a41, a14)] is derived.

B. Pair Sequence to Matrix Transformation

The procedure for deriving a pair sequence from a matrix
was introduced in Section III-A. The method used for ob-
taining the corresponding placement once the materials are
arranged into a pair sequence is described here.

Given a pair sequence Pr×s, an r × s matrix Ar×s is first
constructed according to the subscript of Pr×s. Since each
element in a pair corresponds to a unique location in the
matrix, only materials located in a pair are placed in the
corresponding entries in the matrix serially. For example, given
a pair sequence P3×3 = [a, (b, c), (d, e), (f, g), (h, i)], a 3 × 3
matrix A3×3 is first constructed. Since each element in a pair is
associated with a unique location in the matrix, material “a” in
the first pair is placed in the corresponding entry a22 in A3×3,
as shown in Fig. 10(a). Then, materials “b” and “c” in the
second pair are placed in entries a12 and a32, respectively, and
so on. Once the pairs (d, e) and (h, i) in the original P3×3 are
swapped, the pair sequence becomes P3×3 = [a, (b, c), (h, i),
(f, g), (d, e)]. Thus, the corresponding placement is changed,
as shown in Fig. 10(b).

IV. Placement Initialization

In this section, the procedure for constructing an initial
placement for an arbitrary-ratio capacitor set is introduced. In

Fig. 10. (a) Placement result of P3×3 = [a, (b, c), (d, e), (f, g), (h, i)].
(b) Placement result of P3×3 = [a, (b, c), (h, i), (f, g), (d, e)], where the pairs
(d, e) and (h, i) are exchanged in the original P3×3 (the two exchanged pairs
are colored in different shades of gray).

Fig. 11. (a) Experimental placement where uDs are placed at the corners.
(b) Placement after exchanging uDs with u3s in the original. (c) Placement
after exchanging uDs with u1s and u2s in the original. M: oxide-gradient-
induced mismatch. L: overall correlation coefficients.

the initial placement, all capacitors are arranged in a common-
centroid structure and each noninteger-ratio capacitor satisfies
the adjacency constraint. The first two sections, respectively,
show the preferred method of arranging the dummy unit
capacitors and the adjacent unit capacitors in a placement.
Next, the procedure for pairing all the unit capacitors of a
capacitor set is presented. Then, the method for arranging these
unit-capacitor pairs to obtain a pair sequence is described.
Finally, the whole algorithm of pair-sequence initialization is
given in the last section.

A. Dummy Unit Capacitors

The locations of dummy unit capacitors affect the mismatch
of a placement. Fig. 11 shows three placements for a capacitor
set {C1, C2, C3, C4, C5} with a capacitance ratio of 2:2:4:8:16.
Assume that the matrix used to place the capacitor set is
A6×6, which means that four dummy unit capacitors have to
be inserted into the placement (i.e., bD = 4). Let Ci = {ui}
denote the set of unit capacitors belonging to Ci, where ui is
one unit capacitor of Ci and the size of Ci is bi. Similarly,
CD = {uD} denotes the set of unit capacitors belonging to CD

and the size of CD is bD. Fig. 11(a) shows a common-centroid
placement, in which all dummy unit capacitors are placed at
the corners of the placement. Fig. 11(b) and (c) shows the
placements after the dummy unit capacitors uDs have been
exchanged with the unit capacitors u3s and with u1s and u2s,
respectively. Based on the oxide gradient model and the spatial
correlation model, the three placements were evaluated. The
following observations were made.

1) Capacitors placed closer to the center of the matrix
lead to larger correlation coefficients [10]. Thus, it is
preferred to place capacitors close to the center, if
possible. Since some entries closer to the center are
occupied by the dummy unit capacitors in Fig. 11(b),
the overall correlation coefficients of the placement in
Fig. 11(b) are smaller than those in Fig. 11(a).
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Fig. 12. (a) Experimental placement with two pairs of candidate entries for
the adjacency constraint. (b) Unit-capacitor pair moved from (a21, a53) to
(a41, a33). (c) Unit-capacitor pair moved from (a21, a53) to (a61, a13). The
unit capacitor marked by “*” is selected as the decimal of a nonunit capacitor.
M: oxide-gradient-induced mismatch. L: overall correlation coefficients.

2) A small capacitor (e.g., C1 or C2) usually has a larger
difference from its ideal capacitance value if it is placed
away from the center of the matrix [11]. The mismatch
of the placement in Fig. 11(c) is larger than that in
Fig. 11(a) because the entries near the center are oc-
cupied by the dummy unit capacitors.

Based on the above observations, dummy unit capacitors
should be placed close to the boundary of a matrix and small
capacitors should be placed near the center of a matrix.

B. Adjacent Unit Capacitors

For the layout of an arbitrary-ratio capacitor set C =
{C1, C2, . . . , Ct} with a capacitance ratio of q1 : q2 : . . . : qt ,
each capacitor Ci requires bi unit capacitors, where bi = �qi�.
The placement of each noninteger-ratio capacitor must fulfill
the adjacency constraint (i.e., at least two unit capacitors are
placed at adjacent locations in the resulting placement). In this
section, the suitable placement for adjacent unit capacitors is
determined.

Given a capacitor set {C1, C2} with a capacitance ratio
of 3.7:6 to be placed in a matrix A6×3, four and six unit
capacitors, respectively, are required to implement C1 and
C2. The placement of unit capacitors u1s has to satisfy the
adjacency constraint. Fig. 12(a) shows a common-centroid
placement for the capacitor set. Since no two u1s are placed
at adjacent locations, the placement does not satisfy the
adjacency constraint. To obtain a feasible placement, the unit-
capacitor pair in entries (a21, a53) is selected and moved to the
adjacent locations of the other pair in entries (a51, a23). There
are two pairs of candidate entries, namely, (a41, a33) and (a61,
a13), and Fig. 12(b) and (c) shows the resulting placements of
the two choices, respectively. The three placements in Fig. 12
were evaluated using the oxide gradient model and the spatial
correlation model. The following observation was made.

1) The mismatch of the placement in Fig. 12(c) is larger
than that in Fig. 12(b) because C1, which is a smaller
capacitor relative to C2, is placed farther from the center
of the matrix.

The adjacency constraint is intrinsically easier to fulfill for
a larger capacitor because it contains more unit capacitors. For
smaller capacitors, candidate entries closer to the center of a
matrix are preferred.

C. Unit-Capacitor Pairing

Unit-capacitor pairing is used to iteratively pair two unit
capacitors until each unit capacitor of a capacitor set belongs
to one pair. Then, the resulting pairs are arranged to form
a pair sequence. According to the definition in Section III,
the associated two unit capacitors in a pair are placed in
symmetric locations with respect to the center of the matrix.
Therefore, any two unit capacitors belonging to a given
capacitor are preferred to be paired to obtain a symmetric
placement. However, if a capacitor comprises an odd number
of unit capacitors, one unit capacitor must be left out. Thus,
for a capacitor with an odd number of unit capacitors, one
unit capacitor is first selected such that the remaining unit
capacitors can be paired.

Given an arbitrary-ratio capacitor set C and a matrix Ar×s,
dummy unit capacitors are generated if n > w. They form
a dummy capacitor CD = {uD} whose size is bD. CD is
appended to the original set C to construct a new set C′ = {C1,
C2, . . . , Ct , CD}. It is clear that the entries of Ar×s can be
filled by the unit capacitors of C′. If a capacitor in C contains
only one unit capacitor, the capacitor is classified into subset
Cunit. If a capacitor in C comprises an odd number of unit
capacitors and the number is greater than two (i.e., 3, 5, . . . ),
the capacitor is classified into subset Codd. For a noninteger-
ratio capacitor Ci whose ratio is less than two (i.e., 1 < qi <

2), its layout consists of only two unit capacitors that must be
placed at adjacent locations. In order to deal with the adjacency
constraint for such a capacitor more easily, it is divided into
two capacitors: C′

i and C′′
i , each of which comprises only one

unit capacitor. Thus, both C′
i and C′′

i are classified into the
subset Cunit.

Let k and l denote the numbers of capacitors in Cunit and
Codd, respectively. Let z = 1 and 0 denote that bD is odd and
even, respectively. If a unit capacitor from each capacitor in
Cunit and Codd and also from capacitor CD is selected when z =
1, the number of extracted unit capacitors is k+ l+z. Thus, the
number of remaining unit capacitors in each capacitor becomes
even, and they can be paired. The selected unit capacitors (i.e.,
k+l+z unit capacitors) can be paired according to the following
cases.

Case 1) Both k and (l+z) are odd: A unit capacitor is selected
from k unit capacitors, and another one is selected
from l unit capacitors if l �=0 (or from z unit capacitors
if l = 0). The two selected unit capacitors are con-
sidered as a pair. Thus, the remaining unit capacitors
can form (k−1)/2 and (l+z−1)/2 pairs.

Case 2) k is odd and (l+z) is even: A unit capacitor is selected
from k unit capacitors and treated as a single-unit pair
(i.e., a pair which contains only one unit capacitor).
Thus, the remaining unit capacitors can form (k−1)/2
and (l+z)/2 pairs.

Case 3) k is even and (l+z) is odd: if k �= 0, a unit capacitor
is selected from k unit capacitors and considered
as a single-unit pair, and thus the remaining unit
capacitors can be handled by Case 1; if k = 0, a
unit capacitor is selected from l unit capacitors if l �=
0 (or from z unit capacitors if l = 0) and treated as
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a single-unit pair, and the remaining unit capacitors
can form (l+z−1)/2 pairs.

Case 4) Both k and (l+z) are even: The k unit capacitors form
k/2 pairs, and the (l+z) unit capacitors form (l+z)/2
pairs.

After the k + l + z unit capacitors are paired, they can be
classified into one of five types.

1) S(single,): Single-unit pairs with each pair having only one
unit capacitor.

2) S(unit, unit): Two unit capacitors from two different capac-
itors in Cunit.

3) S(unit, odd): One unit capacitor belongs to a capacitor in
Cunit, and the other belongs to a capacitor in Codd.

4) S(odd, odd): Two unit capacitors from two different capac-
itors in Codd.

5) S(odd, dummy): One unit capacitor belongs to a capacitor
in Cunit or Codd, and the other belongs to CD.

After the above procedure, the number of remaining unit
capacitors in each capacitor becomes even, and thus the unit
capacitors can be paired. These unit-capacitor pairs can be
classified into one of two types.

1) S′: Two unit capacitors in each pair come from the same
capacitor except CD.

2) S(dummy, dummy): Two unit capacitors belong to CD.

Given a capacitor set {C1, C2, C3, C4, C5, C6, C7, C8, C9,
C10} with a capacitance ratio of 1:1:1:1:1.7:2:2.6:3:3:4.8 and
a matrix A5×5, the numbers of unit capacitors required by Ci

are 1, 1, 1, 1, 2, 2, 3, 3, 3, and 5, respectively. The number of
dummy unit capacitors is 3. According to the aforementioned
definition, Cunit = {C1, C2, C3, C4, C

′
5, C

′′
5} and Codd = {C7, C8,

C9, C10}. Then, a unit capacitor is selected from each capacitor
in Cunit and Codd, and also from CD, respectively (i.e., u1, u2,
u3, u4, u5, u5, u7, u8, u9, u10, and uD are extracted). Since k
= 6, l = 4, and z = 1, the selected unit capacitors are paired
according to Case 3. Assume that u1 is selected from the first
six unit capacitors (i.e., u1, u2, u3, u4, u5, and u5) and is
considered as a single-unit pair [i.e., (u1, ) ∈ S(single,)]. Next,
the remaining five unit capacitors (i.e., u2, u3, u4, u5, and
u5) and the last five unit capacitors (i.e., u7, u8, u9, u10, and
uD) are paired based on Case 1. Thus, a unit capacitor is
selected from each of the two groups (assume that u5 and
u7 are chosen). The two unit capacitors are considered as a
pair [i.e., (u5, u7) ∈ S(unit, odd)]. Finally, the remaining unit
capacitors u2, u3, u4, u5, u8, u9, u10, and uD are paired, which
form (u2, u3) and (u4, u5) ∈ S(unit, unit), (u8, u9) ∈ S(odd, odd), and
(u10, uD) ∈ S(odd, dummy). After the above process, the numbers
of remaining unit capacitors in capacitors Ci and CD becomes
even, and these unit capacitors can be paired and classified into
the types S′ and S(dummy, dummy), respectively. Fig. 13 shows
the results of unit-capacitor pairing obtained using the above
procedure.

D. Pair Arrangement

After all unit capacitors of a capacitor set are paired, the
pairs can be arranged to obtain a pair sequence, and then an
initial placement from the pair sequence can be derived. To

Fig. 13. Example of unit-capacitor pairing. *: noninteger-ratio capacitor.

obtain a suitable placement, it is necessary to determine an
order for assigning these pairs into the pair sequence.

Before the procedure is described, the properties of various
kinds of capacitor are first analyzed. If a capacitor belongs to
Cunit, it is best to place it near the center of a matrix such that
its centroid can be close to the matrix’s center. If a capacitor
belongs to Codd, one of its unit capacitors will be a single-unit
capacitor and the others will form several unit-capacitor pairs.
Since each unit-capacitor pair can be automatically placed in
symmetric locations in the matrix, the capacitor’s centroid can
be located close to the center of the matrix if the single-unit
capacitor is also placed near the matrix’s center. Finally, if a
capacitor comprises an even number of unit capacitors, its unit
capacitors can be paired completely, and thus its centroid is
exactly at the center of the matrix.

Based on the above analysis, some unit capacitors should
have higher priority than others to be placed closer to the
matrix’s center for a common-centroid placement. According
to the observations in Section IV-A, dummy unit capacitors
should be placed close to the boundary of a matrix and small
capacitors should be placed near the center of a matrix. If a
pair can be arranged near to the head of a pair sequence, the
placement of the associated unit capacitors would be close to
the matrix’s center; otherwise, their placement is far from the
matrix’s center. Therefore, the following priorities are assigned
to the pair types:

S(single,) > S(unit, unit) > S(unit, odd) > S(odd, odd) > S(odd, dummy) > S′ > S(dummy, dummy)

where S(single,) > S(unit, unit) means that S(single,) has a higher
priority than S(unit, unit), and so on. A pair whose type has higher
priority will be arranged closer to the head of a pair sequence.

E. Algorithm for Pair-Sequence Initialization

This section gives a complete procedure for initializing a
pair sequence (the pseudocode is shown in Algorithm 1).
Given a capacitor array and a matrix for placement, the number
of required unit capacitors for each capacitor and the number
of dummy unit capacitors are first calculated (see Line 1).
Next, unit capacitors are paired and classified into different
types (see Line 2). Then, the pairs are placed into a pair
sequence serially according to their priorities. Since the pairs
belonging to the same type have identical priority, they are
arranged into a pair sequence in deterministic order (see Lines
4–8). Finally, the adjacency constraint for noninteger-ratio
capacitors is checked. If a placement violates the adjacency
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Algorithm 1 InitializePairSequence(Capacitor array, Matrix size)
1: Calculate the number of required unit capacitors for

each capacitor;
/* All unit capacitors are paired and classified into seven
pair types; */

2: Unit-capacitor pairing for the capacitor array;
3: Allocate an empty pair sequence P;
4: for highest-priority pair type to lowest-priority pair type do
5: for all unit-capacitor pairs belonging to this pair type do
6: Add the pair that has a unit capacitor ui with the

smallest index i to the end of the pair sequence P;
7: end for
8: end for
9: Pr×s ← append the matrix size r × s to the pair sequence P;

10: Check the adjacency constraint and maintain a feasible
placement;

11: return Pr×s,

Fig. 14. (a) Initial placement for the capacitor array shown in Fig. 13, which
violates the adjacency constraint. (b) Feasible placement for the noninteger-
ratio capacitors C5, C7, and C10. Noninteger-ratio capacitors are colored in
different shades of gray.

constraint, it is transformed into a feasible one (see Line 10).
The details of maintaining a feasible placement are described
in Section V-B.

Assume that the capacitor array shown in Fig. 13 is to
be placed into a matrix A5×5. A pair sequence P5×5 = [u1,
(u2, u3), (u4, u5), (u5, u7), (u8, u9), (u10, uD), (u6, u6), (u7,
u7), (u8, u8), (u9, u9), (u10, u10), (u10, u10), (uD, uD)] is
first generated by Lines 1–9 of Algorithm 1. From the pair
sequence, the corresponding placement can be derived, as
shown in Fig. 14(a). Since capacitors C5, C7, and C10 are
noninteger-ratio capacitors, their placements have to satisfy
the adjacency constraint. However, the placements of C5 and
C10 shown in Fig. 14(a) violate the adjacency constraint. This
condition is checked and modified by Line 10 of Algorithm 1
to achieve a feasible placement, as shown in Fig. 14(b), for
noninteger-ratio capacitors.

V. Placement Algorithm

After an initial placement has been generated, the SA algo-
rithm [21] is used to obtain better results. The SA algorithm
repeatedly perturbs the pair sequence until a predefined ter-
mination condition is fulfilled. In the following sections, three
operations for perturbing a pair sequence without breaking
the symmetry property are introduced. To guarantee that the
adjacency constraint is fulfilled after perturbation, a procedure
for maintaining a feasible placement is presented. The third
section gives the cost function of the proposed SA-based place-
ment algorithm. Several techniques for increasing efficiency

Algorithm 2 MaintainFeasiblePlacement(Pr×s, Cap-for-check {Ct})
1: Derive a placement T from Pr×s;
2: check−list ← {Ct};
3: while (check−list �= ∅)
4: Ci ← extract−one−cap(check−list);
5: if Ci violates the adjacency constraint in T then
6: for all feasible candidate entries for Ci do
7: Calculate a priority value for this candidate entry;
8: end for
9: Select the candidate entry with the highest priority

for exchange;
10: if the selected candidate entry is originally

occupied by Cj that is another noninteger ratio
capacitor then

11: check−list ← check−list ∪{Cj};
12: end if
13: Update Pr×s and T ;
14: end if
15: end while

are described in the fourth section. Finally, the last section
shows the global algorithm for capacitor placement.

A. Perturbation

The symmetry property of a common-centroid placement
should be maintained during perturbation. To avoid breaking
this property, the following operations are proposed.

1) Op1: It chooses one pair pi that belongs to S(unit,odd),
S(odd,odd), or S(odd,dummy), and then reverses the order of
the two unit capacitors in pi.

2) Op2: It chooses two pairs pi and pj from any pair type
except S′, and then exchanges one unit capacitor uk in
pi with another unit capacitor ul in pj .

3) Op3: It chooses two pairs pi and pj from any pair type
except S(single,), and then exchanges the order of pi and
pj in the pair sequence.

Since Op2 exchanges the contents of two selected pairs, the
types of the two pairs have to be updated after this operation
is applied.

B. Maintaining a Feasible Placement

A feasible placement, which meets the adjacency constraint,
may become infeasible after perturbation. To guarantee that
the resulting placement is always feasible for noninteger-ratio
capacitors, a procedure for maintaining a feasible placement
after each perturbation is proposed (pseudocode is shown in
Algorithm 2).

Given a pair sequence, the algorithm first derives a place-
ment from the pair sequence (see Line 1), and then assigns
noninteger-ratio capacitors {Ct} into a checklist for a feasi-
bility check (see Line 2). In the beginning, {Ct} contains all
noninteger-ratio capacitors of C; thus, the feasibility of all
noninteger-ratio capacitors has to be checked. However, to
avoid unnecessary feasibility checks during the SA process,
only the noninteger-ratio capacitors involved by a perturbation
are included into {Ct}. Then, the capacitors in the checklist are
checked in sequence (see Lines 3 and 4). If any capacitor Ci

violates the adjacency constraint, all candidate entries that can
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be exchanged with the invalid unit capacitors of Ci are traced,
and each of these candidate entries is evaluated to determine
its priority (see Lines 5–8). According to the observations
in Section IV-B, the candidate entries that are closest to the
center of a matrix are preferred under the adjacency constraint.
Therefore, the priority of a candidate entry is determined
by the distance from the entry to the matrix’s center, with
a shorter distance leading to a higher priority. However, if
the candidate entry is occupied by another capacitor that is
also a noninteger-ratio capacitor or has a smaller capacitance
ratio than that of Ci, its priority is modified to a lower level.
After the priority of all candidate entries has been evaluated,
the candidate entry with the highest priority is selected for
exchange with the invalid unit capacitor of Ci (see Line
9). Only Op1 and Op3 are used in the exchange process;
thus, the types of associated pairs are not changed. If the
selected candidate entry is originally occupied by another
noninteger-ratio capacitor Cj , Cj will be appended to the
checklist because its placement may violate the adjacency
constraint after the exchange (see Lines 10–12). Finally, the
pair sequence and the corresponding placement are updated
(see Line 13).

For example, given the placement shown in Fig. 14(a) and
a noninteger-ratio capacitor set {C5, C7, C10}, which requires
a feasibility check, Algorithm 2 first checks C5 and finds that
C5 violates the adjacency constraint. Thus, the entries a12, a32,
a24, and a44 are traced as candidate entries. Depending on their
distances to the matrix’s center, the initial priority is a32 > a24

= a44 > a12. To move u5 from the original entry a34 to the
first candidate entry a32 for fulfilling the adjacency constraint,
Op1 is performed on the pair (a32, a34). However, if u5 is to
be moved from the original entry a22 to the second candidate
entry a24, Op1 is first executed to reverse the sequence in the
original pair (a22, a44), and then Op3 is performed to swap the
pairs (a22, a44) and (a42, a24). To move u5 from the original
entry a22 to the third candidate entry a44, Op1 is executed
on the pair (a22, a44). Since both the second and third cases
involve the entry a44, which is originally occupied by another
noninteger-ratio capacitor C7, the priority of the two candidate
entries is modified to a lower level. Similarly, the fourth
candidate entry a12 is also occupied by the noninteger-ratio
capacitor C7, and thus a lower priority is given. According
to the final priority, the candidate entry a32 has the highest
priority and is selected for exchange. Next, the feasibility of
C7 is checked; its placement satisfies the adjacency constraint.
Finally, Algorithm 2 checks C10 and finds that C10 violates
the adjacency constraint. The feasible candidate entries for C10

include a23, (a21, a45), and (a42, a24). After a similar evaluation
process is conducted on the candidate entries, the candidate
entries (a21, a45) have the highest priority and are selected for
exchange. Since the entry pair (a21, a45) can be exchanged
with the pair (a13, a53) or (a52, a14), the latter is randomly
chosen and then Op3 is executed on the pairs (a21, a45) and
(a52, a14). Thus, the unit-capacitor pair (u10, u10) is moved
from the original entries (a52, a14) to (a21, a45), and a feasible
placement for C10 is obtained. The above procedure maintains
the feasibility of all noninteger-ratio capacitors. The resulting
placement is shown in Fig. 14(b).

C. Cost Function

The proposed method has two major objectives, namely, to
minimize oxide-gradient-induced mismatch and to maximize
the overall correlation coefficients. The oxide-gradient-induced
mismatch and overall correlation coefficients of a placement
can be evaluated using the oxide gradient model and the spatial
correlation model, respectively. For a placement T, let MT

denote its oxide-gradient-induced mismatch and LT denote
its overall correlation coefficients. During the SA process,
the average values of the oxide-gradient-induced mismatch
and the overall correlation coefficients, which are respectively
denoted by Mavg and Lavg, are kept. The cost function �(T )
is computed as

�(T ) = α × Mavg − MT

Mavg
+ (1 − α) × LT − Lavg

Lavg
(12)

where α is a user-specified parameter, 0 ≤ α ≤ 1. The goal of
the algorithm is to find a placement with the maximum �.

D. Efficiency Improvements

Since the SA is a time-consuming process, the following
techniques are proposed to decrease its runtime.

1) Bucket data structure: To facilitate the operations during
perturbation, a bucket list data structure is used to record
necessary information. It includes two bucket arrays HB

and HP , which denote different pair types and a pair
sequence, respectively. Each pair associated with a pair
type is connected to the entry of the corresponding type
in HB by a doubly linked list. There is also another point
referring to the pair from the pair sequence HP . Fig. 15
shows the data structure used in the program. With this
data structure, the program can easily extract a pair with
the specified type during perturbation. If the type of pair
changes after perturbation, only the information in the
associated doubly linked lists has to be updated.

2) Redundancy elimination: The program ignores redun-
dant operations during perturbation. For example, if two
capacitors belonging to Cunit are chosen for position
exchange, the resulting placements before and after the
exchange are geometrically identical because the two ca-
pacitors are intrinsically the same if their index numbers
are disregarded. Such a perturbation is considered as a
redundant operation.

3) Operation combination: The convergence of the SA
process can be enhanced by applying an operation that
can lead to a large change. Thus, Op1 and Op3 are
combined to get a new perturbation. The operation is
to choose two pairs pi and pj from any pair type except
S(single,), and perform Op3 on pi and pj followed by one
of the following actions.

a) Execute Op1 on pi.
b) Execute Op1 on pj .
c) Execute Op1 on both pi and pj .

Note that these operations might deteriorate the solution
quality when the SA process is converging. Therefore, a much
low probability of applying these operations is given at low
temperature.
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Fig. 15. Bucket data structure used in the proposed program.

Algorithm 3 CapacitorPlacement(Capacitor array, Matrix size)
1: Pr×s ← initializePairSequence(Capacitor array, Matrix size);
2: Derive a placement T from Pr×s;
3: Set an initial temperature E and a temperature length G;
4: while (E > freezing point)
5: for k = 1 to G do
6: P∗

r×s ← perturb(Pr×s);
7: maintainFeasiblePlacement(P∗

r×s, Cap-for-check {Ct});
8: Derive a placement T ∗ from P∗

r×s;
9: if �(T ∗) ≥ �(T ) then
10: Pr×s ← P∗

r×s;
11: T ← T ∗;
12: else
13: Calculate an acceptance rate A according to

�(T ), �(T ∗), and E;
14: Generate a random number R;
15: if A > R then
16: Pr×s ← P∗

r×s;
17: T ← T ∗;
18: end if
19: end if
20: end for
21: E ← E × cooling ratio;
22: end while

E. Global Algorithm

The global algorithm for capacitor placement is shown
in Algorithm 3. After an initial placement is generated (see
Lines 1 and 2), the SA algorithm repeatedly perturbs the pair
sequence until the termination condition is fulfilled (see Lines
3–22). The adjacency constraint for noninteger-ratio capacitors
must be maintained after each perturbation (see Lines 6 and
7). The objective is to find a placement with the maximum
� (see Lines 9–11), which achieves the minimum oxide-
gradient-induced mismatch and maximum overall correlation
coefficients simultaneously.

VI. Experimental Results

The proposed capacitor placement algorithm was imple-
mented in the C++ programming language and run on a
2.5-GHz Intel Core2 Quad PC. Three sets of experiments
were performed: 1) arbitrary-ratio capacitor arrays; 2) integer-
ratio capacitor arrays; and 3) capacitor arrays with dummy
capacitors. To keep the comparisons fair, the experimental
setups were the same as those in [10] and [11]: the oxide
thickness t0 was 40 nm, the oxide gradient γ was 10 ppm, the

Fig. 16. (a) Experiment setup for the geometry of unit capacitors.
(b) Placement constructed from [11] for SCF−1. (c) Placement for SCF−1
obtained using proposed method (adjacent unit capacitors for the layout
of nonunit capacitors are colored in different shades of gray, and the unit
capacitor marked by “*” is selected as the decimal of a nonunit capacitor).

correlation coefficient between unit capacitors ρu was 0.9, and
the geometry of unit capacitors was that depicted in Fig. 16(a).

A. Arbitrary-Ratio Capacitor Arrays

The first set of experiments is based on three arbitrary-
ratio capacitor arrays, SCF−1, SCF−2, and SCF−3, which are
sourced from [3] and [11]. These capacitor arrays are designed
for SC filters, and they contain noninteger-ratio capacitors.
Since no previous studies have considered systematic and
random mismatches at the same time for the placement of
arbitrary-ratio capacitor arrays, the proposed method is com-
pared with the systematic algorithm [11], which can handle
arbitrary-ratio capacitor arrays but only considers systematic
mismatch.

The experimental results are shown in Table I. For each
approach, the value of the oxide-gradient-induced mismatch
(denoted by M), the value of the overall correlation coefficients
(denoted by L), and the runtime are listed. The experimental
results show that the placements obtained using the proposed
method have smaller oxide-gradient-induced mismatches than
those obtained by [11] for SCF−1 and SCF−3. The overall
correlation coefficients of the placements obtained using the
proposed method are larger than those obtained by [11] in
all test cases. Fig. 16(b) and (c) shows the resulting place-
ments of SCF−1 based on [11] and the proposed approach,
respectively. Although the two placements have a common-
centroid structure and both satisfy the adjacency constraint,
the placement obtained using the proposed method achieves
a smaller oxide-gradient-induced mismatch and larger overall
correlation coefficients (i.e., higher degree of dispersion).

B. Integer-Ratio Capacitor Arrays

For the placement of integer-ratio capacitor arrays, the
proposed approach is compared with the heuristic algorithm
proposed by Chen et al. [10] based on six integer-ratio capac-
itor arrays. The first three capacitor arrays, named SCF−1−I,
SCF−2−I, and SCF−3−I, are derived from SCF−1, SCF−2,
and SCF−3 by modifying the noninteger-ratio capacitors to
integer-ratio capacitors. The others are sourced from the ca-
pacitor arrays used in self-designed SAR ADCs. Since the
resolutions of the ADCs are 8 bits, 9 bits, and 10 bits,
the capacitor arrays are named SAR−8bit, SAR−9bit, and
SAR−10bit, respectively.

Since [10] only showed the placement result of SCF−3−I,
their algorithm was implemented here to obtain the placement
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TABLE I

Comparison of the Systematic Algorithm [11] and Present Work for Arbitrary-Ratio Capacitor Arrays

Array Name No. of Cap. Capacitance Ratio No. of Unit Cap. Matrix Size Systematic Algorithm [11] Present Work
Max. M (%) L Time (s) Max. M (%) L Time (s)

SCF−1 5 1.2:5.8:7:7:8 30 6 × 5 0.324 9.625 N/A 0.290 9.644 71
SCF−2 5 1:1.4:2:9.2: 17 32 8 × 4 0.878 9.267 N/A 0.878 9.293 73
SCF−3 4 1:1.1:15.6:44.8 64 8 × 8 1.064 5.491 N/A 0.858 5.510 535

N/A: the runtime was not reported in [11].

Fig. 17. Placement result of SCF−3−I obtained using proposed method (the
unit capacitors denoted by u3 are colored in gray for comparison with Fig. 3).

Fig. 18. Oxide-gradient-induced mismatches and overall correlation coeffi-
cients of three different placements for SCF−3−I.

results of the other test cases, which are listed in Table II.
The experimental results show that the placements obtained
using the proposed method achieve smaller oxide-gradient-
induced mismatches and larger overall correlation coefficients
simultaneously than those obtained by [10] in all test cases.
Although the proposed approach is slower than [10] for
smaller capacitor arrays, it runs much faster than [10] for larger
arrays. Since [10] partially exhaustively searches possible
combinations and computes the correlation coefficients for
each combination to obtain the best one, its computational time
increases significantly with the number of available entries.
Therefore, [10] cannot obtain results for the largest capacitor
array (SAR−10bit) within an acceptable time. In contrast,
the proposed approach applies SA to enhance results and
uses several techniques to increase efficiency. Its results and
runtime are thus better than those of [10].

Fig. 17 shows the placement result of SCF−3−I obtained
using the proposed method. Compared with the placement
shown in Fig. 3(b), which is sourced from [10], the place-
ment obtained using the proposed method has comparable
overall correlation coefficients (i.e., high degree of dispersion).
The symmetry property in the placement is also better (i.e.,
common-centroid structure). Based on the oxide gradient
model, the mismatch variation with gradient angle for three

Fig. 19. Placement result of SCF−1 with dummy unit capacitors in square
matrix A6×6 (dummy unit capacitors and adjacent unit capacitors for nonunit
capacitors are colored in different shades of gray; the unit capacitor marked
by “*” is selected as the decimal of a nonunit capacitor).

different placements of SCF−3−I was calculated; the results
are shown in Fig. 18. The placement based on [10] has the
largest oxide-gradient-induced mismatch because it does not
have a common-centroid structure. Although the placement
in Fig. 3(a) and the placement obtained using the proposed
method have a common-centroid structure, the latter has a
smaller oxide-gradient-induced mismatch and larger overall
correlation coefficients because the proposed approach en-
hances the common-centroid placement.

C. Capacitor Arrays With Dummy Capacitors

In this set of experiments, capacitor arrays with non-
square placements were placed in a square using dummy
capacitors. Since a square matrix provides a more com-
pact placement, it sometimes achieves better matching
than a rectangular matrix. However, the size of a square
matrix might be larger than the number of unit ca-
pacitors in a capacitor array. Thus, the arrangement of
dummy unit capacitors in the resulting placement must be
considered.

Table III compares the placements of the capacitor arrays
with and without dummy capacitors. SCF−1, SCF−2, and
SAR−9bit were used because other capacitor arrays are in
square placements. The column “Without Dummy Capacitors”
represents the condition that the matrix size is equal to the
number of unit capacitors (i.e., no dummy unit capacitors
are needed). The data in this column was taken from Tables
I and II directly. The column “With Dummy Capacitors”
represents the condition that the capacitor array is placed into
a square matrix and some dummy unit capacitors are inserted.
In the placement of SAR−9bit, only the issue of dummy unit
capacitors must be considered. However, both the adjacency
constraint and dummy unit capacitors must be considered in
the placements of SCF−1 and SCF−2 because they contain
noninteger-ratio capacitors.

According to the placement results of SCF−1, the matching
of the placement in a square matrix A6×6 is not better than that
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TABLE II

Comparison of the Heuristic Algorithm [10] and Present Work for Integer-Ratio Capacitor Arrays

Array No. of Cap. Capacitance No. of Matrix Heuristic Algorithm [11] Present Work
Name Ratio Unit Cap. Size Max. M (%) L Time (s) Max. M (%) L Time (s)
SCF−1−I 5 2:6:7:7:8 30 6 × 5 0.138 9.651 1 0.085 9.693 7
SCF−2−I 5 1:2:2:10:17 32 8 × 4 0.679 9.318 1 0.559 9.354 7
SCF−3−I 4 1:2:16:45 64 8 × 8 0.650 5.567 2a 0.537 5.577 17
SAR−8bit 9 1:1:2:4:8:16:32:64:128 256 16 × 16 0.800 32.074 602 0.695 32.111 235
SAR−9bit 10 1:1:2:4:8:16:32:64:128:256 512 32 × 16 1.077 38.072 20503 0.878 38.654 681

SAR−10bit 11 1:1:2:4:8:16:32:64:128:256:512 1024 32 × 32 – – –b 1.146 45.515 5130
aThis runtime reported in [10] is 46.9 s, but the same algorithm implemented by us took 2 s. This discrepancy may be caused by the difference in programming
and runtime platforms.
bNo result is reported because the runtime was too long.

TABLE III

Comparison of Capacitor Arrays With and Without Dummy Capacitors Based on Proposed Algorithm

Array No. of Cap. Capacitance No. of Without Dummy Capacitors With Dummy Capacitors
Name Ratio Unit Cap. Matrix Size Max. M (%) L Time (s) Matrix Size Max. M (%) L Time (s)
SCF−1 5 1.2:5.8:7:7:8 30 6 × 5 0.290 9.644 71 6 × 6 0.543 9.633 88
SCF−2 5 1:1.4:2:9.2:17 32 8 × 4 0.878 9.293 73 6 × 6 0.878 9.339 91
SAR−9bit 10 1:1:2:4:8:16:32:64:128:256 512 32 × 16 0.878 38.654 681 23 × 23 0.695 39.243 820

Fig. 20. Placement result of SAR−9bit with dummy unit capacitors in square
matrix A23×23. Dummy unit capacitors are colored in gray.

in a rectangular matrix A6×5. Since the shape of A6×5 is very
close to a square, it can be regarded as a compact placement
for SCF−1. Since A6×6 is larger than A6×5 by one column, it
increases the relative distances between unit capacitors, which
may induce mismatch. Fig. 19 shows the placement result of
SCF−1 with dummy unit capacitors. The placement is not as
compact as that in Fig. 16(c).

For the placement of SCF−2, the original matrix A8×4 has
a shape that is far from a square. If the placement is changed
into a square matrix A6×6, a more compact placement for
SCF−2 can be obtained. Since A6×6 provides a more compact
placement than A8×4, the placement of SCF−2 with dummy

unit capacitors has larger overall correlation coefficients than
that without dummy unit capacitors. Similarly, the shape of
the original matrix A32×16 for SAR−9bit is far from a square.
A more compact placement for SAR−9bit can be obtained
if it is placed into a square matrix A23×23. The placement
results show that using square matrix A23×23 achieves a
smaller oxide-gradient-induced mismatch and larger overall
correlation coefficients than those of the rectangular matrix
A32×16. Fig. 20 shows the resulting placement of SAR−9bit
with dummy unit capacitors.

Based on the experimental results, the following observa-
tions were made.

1) If the shape of a rectangular matrix is very close to
a square, it can be regarded as a compact placement.
Thus, changing the placement into a square matrix is
not necessary.

2) If the shape of an original matrix is far from a square,
changing it into a square matrix by inserting some
dummy unit capacitors will make it a more compact
placement and obtain better matching.

VII. Conclusion

An SA-based approach for implementing a common-
centroid placement with the highest possible degree of dis-
persion for an arbitrary-ratio capacitor array under the con-
sideration of systematic and random mismatches was pro-
posed. A pair-sequence representation for a common-centroid
placement and associated perturbations were also proposed.
The adjacency constraint for noninteger-ratio capacitors in a
common-centroid placement and the arrangement of dummy
capacitors in a compact square placement were discussed.
The experimental results showed that the proposed common-
centroid placement approach was effective in reducing capac-
itor mismatch and that the resulting placements were always
feasible for noninteger-ratio capacitor layouts.
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